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ABSTRACT 
Surveys of temperature, salinity, and velocity from 

CalCOFI, altimetric measurements of sea level, and 
drifter observations of temperature and velocity during 
the 1997-98 El Niiio are now being fit with an eddy- 
resolving ocean model of the Southern California Bight 
region to obtain dynamically consistent estimates of eddy 
variability. Skill is evaluated by the model-data mis- 
match (rms error) during the fitting interval and even- 
tually by forecasting independent data. Preliminary results 
of fitting July 1997 physical fields are ducussed. The phys- 
ical fields are used to drive a three-dimensional NPZD- 
type model to be fit to subsurface chlorophyll a (chl a), 
nitrate, and bulk zooplankton from CalCOFI surveys, 
and surface chl a from SeaWiFS. Preliminary results of 
testing the ecosystem model in one-dimensional and 
three-dimensional form are discussed. 

INTRODUCTION 
The California Cooperative Oceanic Fisheries Inves- 

tigations (CalCOFI) program has sampled the oceano- 
graphic conditions of the Southern California Bight 
(SCB) for 50 years, providing an unprecedented time 
series of physical and biological data (e.g., Roemmich 
and McGowan 1995). However, our understanding of 
the physical processes controlling the large-scale and 
mesoscale variations in these properties is incomplete 
(e.g., Bograd et al., in press). In particular, the nonsyn- 
opticity and relatively coarse spatial sampling (70 km) of 
the hydrographic grid do not resolve the mesoscale eddy 
field (fig. l a ) .  Moreover, these physical variations exert 
a dominant influence on the evolution of the ecosystem 
(e.g., Hayward and Venrick 1998). 

In recent years, additional data sets that partially sam- 
ple the SCB have become available. Acoustic Doppler 
current profiler (ADCP) measurements now sample 
upper-ocean velocity between stations (fig. 1 b) and give 
a more complete picture of the mesoscale (Chereskin 
and Trunnell 1996). Observations of sea level along 
TOPEX tracks (fig. IC) give another partial view of the 
mesoscale, well-sampled along each track but coarsely 
sampled temporally and between tracks. Surface drifters 
occasionally pass through the region (fig. Id). SeaWiFS 
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provides estimates of upper-ocean chlorophyll a (chl a), 
usually giving nearly complete coverage after weeklong 
intervals (depending on cloud coverage). 

In order to better interpret the dynamical balances of 
the physical and biological fields, we are attempting to 
use an ocean model to fuse together the various data 
types and develop a complete four-dimensional picture 
of the evolving flow field and its biology during a par- 
ticular three-week cruise. This model-testing procedure 
is often called a fit. If the fit is successful, the model run 
can be used to assess the balances that control the evolv- 
ing phenomena. If not, the model must be corrected or 
discarded. The final test of the model’s quality is to de- 
termine if forecasting skill is present by running the 
model beyond the fitting time interval into the forecast 
time interval (independent data). 

Assuming that unstable mesoscale eddies dominate 
the physical balances, one anticipates that model fitting 
and/or forecasting skill is achievable to at least the eddy 
turnaround time scale, which is roughly one to three 
months. If atmospheric forcing dominates the flow vari- 
ability, such as in the surface mixed layer, then the fit- 
ting time scale is infinite (quantitatively limited only by 
the model’s physics), and the forecasting time scale is 
the roughly weeklong time scale of atmospheric fore- 
casting skill. 

Unfortunately, these fitting and forecasting time scales 
are probably overestimated, because limited oceano- 
graphic data cannot yield unique solutions for the fits 
or unambiguous verifications for forecasts ( e g  , Miller 
and Cornuelle 1999). However, the 1997-98 El Niiio 
and the 1999-2000 La Niiia time periods were sampled 
particularly well in the SCB, giving us a unique oppor- 
tunity to test fitting and forecasting skill and to assess 
dynamic and ecosystem balances during these strongly 
anomalous warm and cold time periods. 

The fundamental scientific issues to be ultimately ad- 
dressed by this research are the relative importance of 
mesoscale instabilities, topographic control, remote 
oceanic forcing, and wind forcing in the evolution of 
eddies in the CalCOFI region; the relative predictive 
time scales of deep ocean versus surface processes ver- 
sus shelf-slope processes; and the ecosystem balances. 
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Figure 1. Distribution in space of the data types to be fit by the inverse method in the model domain for July 1997: a, CalCOFl hydrographic stations of tempera- 
ture, salinity, nitrate, chl a, and bulk zooplankton; b, ADCP upper-ocean currents: c, sea level from TOPEX representing 9-day time differences; and d, drifter 
observations of 15 m velocity and SST, and bathymetry used in the model (m). 

We report here our progress in fitting July 1997 hy- 
drography, tuning one-dimensional ecosystem parame- 
ters based on historical CalCOFI data, and initializing 
three-dimensional ecosystem structure from data during 
February 1998. 

DATA SOURCES 
CalCOFI hydrographc data (http://www-mlrg, ucsd.edu/ 

cakc4.html) from 1949 through 1999 were used for com- 
paring against model results, and for creating first-guess 
initial and key background nudging conditions. The data 

88 



MILLER ET AL.: FllllNG CALCOFI PHYSICAL AND BIOLOGICAL OBSERVATIONS 
CalCOFl Rep., Vol. 41, 2000 

used herein for various purposes include temperature, 
salinity, density, oxygen, nitrate, chl a, and primary pro- 
duction rates. 

Climatological profiles of the data were created by 
binning the offshore and coastal stations. Profiles of the 
coastal temperature, salinity, and nutrient climatologies 
show a marked seasonal 50 m doming of the isopleths 
with a maximum vertical shoaling in May, coincident 
with the seasonal maximum of California Current ve- 
locities. Offshore climatologies show little variability 
except in May and December, when the profiles show 
the presence of colder, nutrient-rich water. This vari- 
ability has been attributed to sampling biases resulting 
from a change in the CalCOFI sampling schedule. In 
the last 15 years CalCOFI has not sampled in the months 
of May and December. 

Further analysis of the CalCOFI data includes ob- 
jective analysis (OA) to create maps of the data fields 
at model levels for first-guess initial conditions. These 
techniques are discussed in more detail in subsequent 
sections. Raw hydrographic observations are also used 
for quantifying fitting skill. ADCP velocity estimates 
are used as one-hour averages, which provide roughly 
five samples between CalCOFI hydrographic stations. 
TOPEX altimetric measurements of sea level are used 
as differences between nine-day repeat track times in 
order to remove geoid effects. Drifters provide daily sur- 
face velocity and temperature estimates. Atmospheric 
forcing is derived from COADS and NCEP/NCAR re- 
analysis fields. 

Daily satellite-derived estimates of surface chl a were 
obtained from the NASA SeaWiFS data archive. We use 
the global gridded L3m data set, which has 9 kni reso- 
lution. The satellite began collecting data in September 
1997, so we presently have close to 2.5 years of images. 
The daily images are unfortunately incomplete in the 
CalCOFI region due to the frequent cloud cover off- 
shore. Therefore, 5-day composite images have been 
created for use in developing initial conditions and quan- 
titative model-data comparisons. 

PHYSICAL AND ECOSYSTEM MODELS 
We use an eddy-resolving primitive equation (PE) 

generalized sigma-coordinate ocean circulation model 
called the Regional Ocean Modeling System (ROMS), 
which is a descendant of SCRUM (Song and Haidvogel 
1994). The 9 km model grid is curvilinear and extends 
about 1,200 km along the coast from northern Baja 
California to north of the San Francisco Bay area, with 
roughly 700 km offshore extent normal to the coast 
(fig. Id). The northern, southern, and western bound- 
aries are open, and are treated by using a modified ver- 
sion of the Orlanski radiation scheme or with nudging 
to specified time-dependent temperature and salinity 

values. We use ETOPO-5 for the bathymetry (fig. Id) 
and the coastal masking along the eastern boundary. In 
the vertical, 20 layers reach froin the free surface to the 
bottom of the ocean. The sigma layers are such that they 
have increased resolution in the surface and bottom 
boundary layers. In the shallow coastal region, the top 
layer can be as thin as 2 meters. 

We initially tested the physical model with simple pa- 
rameterizations of the external forcing and bathymetry, 
in order to verify its ability to capture the basic physics 
of the region. Integration with smooth climatological 
forcing (COADS data) showed that the statistics of the 
model are comparable with observations. Some of these 
features include a meandering current flowing from 
north to south, a poleward undercurrent on the conti- 
nental slope, and a recirculation gyre in the SCB. In a 
qualitative analysis of the model results, we found the 
horizontal eddy length and time scales to be compara- 
ble with the observed eddies. A more quantitive mea- 
sure of the model's skdl is assessed by the fitting procedure 
described below. 

The physical model drives a seven-component eco- 
system niodel (either uncoupled or coupled via the 
light-absorption feedback) which includes nitrate, phy- 
toplankton, ammonium, zooplankton, chl a, and two 
(large and small) detritus pools. The present model is 
similar in structure to the coupled ocean circulation eco- 
system model developed and applied to the California 
coastal transition zone by Moisan et al. (1996). The sim- 
ulated flow fields from the three-dimensional physical 
model are used to advect and diffuse the ecosystem's 
model constituents. The biological quantities are solved 
in the model as tracers with the addition of a nonlinear 
source/sink terni that regulates the exchange between 
one biological variable and the other (e.g., Fasham et 
al. 1990). 

The biological portion of the model, therefore, is a 
system of seven coupled partial differential equations that 
govern the spatial and temporal distribution of a non- 
conservative quantity, which is of the form 

where v is the 3D gradent, B is a nonconservative quan- 
tity (one of the seven components in the biological 
model), u' is the vertical and horizontal velocity of the 
fluid, and ' u ~ , ~ ~ ~ ~  is the vertical sinking rate of the bio- 
logical components. The velocity, u', and the kinematic 
eddy diffusivity, K,  were obtained as described below. 
The source or sink term, S ,  for the biological compo- 
nent is defined by the sum of the individual forcing terms 
associated with the ecosystem model, and is the 

+ 
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rate at which the biological component is nudged back 
to the climatological mean of the biological component, 
Bcl,,,l. In this study, the climatological fields will be used 
to relax only the deep-water values over a long time 
scale so that climate drift of the deep-water nutrient 
fields can be avoided. 

INVERSE METHOD FITTING TECHNIQUE 
Many techniques exist for combining data with mod- 

els (e.g., reviews by Ghil and Malanotte-Rizzoli 1991; 
Bennett 1992; Wunsch 1996). Least-squares methods are 
widely used for fitting both steady and unsteady mod- 
els to data, and can be implemented sequentially as the 
Kalman smoother, or globally by solving the Euler- 
Lagrange equations to find the minimum of an objec- 
tive function (Le Dimet and Talagrand 1986; Wunsch 
1988; Thacker 1989; Tziperman and Thacker 1989; 
Bennett and Thorburn 1992). The objective function is 
a sum of quadratic terms penalizing misfit between the 
observations and the data produced by the model, and 
also penalizing corrections to the assumed model param- 
eters, including forcing, initial conditions, and bound- 
ary conditions. The weighting of the penalty terms may 
include smoothness criteria, and the forcing errors may 
include errors in the model equations at every point in 
space and time (Bennett and Thorburn 1992). A global 
inverse method sirnilar to the “Green’s function method” 
(Wunsch 1996) was used to fit the regional PE model 
to the hydrographic data of a CalCOFI survey covering 
about 3 weeks by adjusting the initial state of the model. 
Because the model forcing and boundary conditions 
were not adjusted, the model evolution depended only 
on the initial conditions. 

The starting guess for the model’s initial conditions 
came from a time-independent, three-dimensional ob- 
jective analysis of the CalCOFI observations, treated as 
if they were simultaneous at the start of the survey. The 
model was run from this poorly resolved initialization, 
and the modeled data were compared to the raw obser- 
vations throughout the duration of the CalCOFI survey 

The misfits between the model and the observation 
were corrected by adjusting the initial conditions based 
on Green’s functions that relate changes in the model’s 
initial conditions to changes in the model’s estimates of 
the observations. The model’s initial state was adjusted 
to minimize the sum of the squared, normalized misfits 
between the observations and the temperatures and salin- 
ities predicted by the model at all the data points over 
the time range, while also minimizing the sum of squares 
of the normalized changes to the model’s initial condi- 
tions. The changes to the initial conditions are expanded 
in sinusoids in the horizontal and smooth functions 
(EOFs) in the vertical, so the minimization procedure 

(fig. 2). 
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Figure 2. Observed (-x-) and modeled temperature at 0, 75, and 200 m 
plotted along-track as a function of station for the July 1997 CalCOFl cruise. 
The base model run (dotted line) is initialized from an objective analysis of 
the CalCOFl hydrographic data. The model run using the correction to initial 
conditions provided by the inverse solution (solid line) shows reduced misfit 
mainly in the shallow near-coastal stations. 

includes smoothness constraints by penhzing short length 
scales more than long scales. The assimilation retains the 
form of objective mapping as a least-squares fit (Davis 
1985), with the data covariance matrix derived from the 
time-dependent Green’s functions and the model param- 
eter covariance. Setting the model’s covariance controls 
the smoothing constraints, and the data error covariance 
governs the fit to the data. 

Errors in fitting to the data were assumed to come 
both from errors in the observations and from model 
errors due to the linearization, the limited set of initial 
perturbations, and the limited horizontal and vertical 
resolution. The assumed data error bars were checked 
against the final misfits (“residuals”) after the fit, to as- 
sure that the assumptions had not been violated, and 
that no single datum exerted significant influence on 
the estimate. Because advection is important in this ex- 
ample, the linear Green’s functions depend on the ini- 
tial state, so the estimation procedure must be iterated. 
Miller and Cornuelle (1999) provide further details of 
our fitting procedure in the context of a dfferent oceano- 
graphic region. 

TESTS OF THE DYNAMICAL FITS 
The fitting procedure was tested for the July 1997 

CalCOFI survey (cruise 9707) when El Ni5o conditions 
prevailed in the tropical Pacific. At this time, the initial 
signal of El Niiio in California waters was observed as 
an increase in the coastal undercurrent, which trans- 
ported unusually warm waters northward at depths below 
100 m (Lynn et al. 1998). Local changes in the wind 
forcing due to the atmospheric teleconnections with 
El Niiio followed only in November 1997. 

The general view of the physical structure from 
CalCOFI hydrography at this time shows the core of 
the California Current system (CCS) to be displaced 
slightly farther west than usual (Lynn et al. 1998). 
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A well-defined inshore countercurrent, evident in both 
temperature and salinity, with greater-than-average ve- 
locity was observed. A vertical section along CalCOFI 
line 93 shows a plug of water with salinity exceeding 
34.4 at the 200 m depth level that was not found dur- 
ing the previous cruise. The ADCP velocities confirm 
a strong and continuous poleward California Under- 
current through the SCB and around Point Conception 
that advects highly saline and warm waters from the 
southern boundary. This pattern is thought to be related 
to the coastally trapped Kelvin-like waves excited by 
the strong El Niiio event in the tropics. 

Initialization Procedure and Forcing 
In order to commence the model fitting procedure, 

an initial ocean state must be constructed to be as close 
as possible to the (unknown) observed one. Observations 
for the nonsynoptic three-dimensional temperature and 
salinity fields are available only in the small “CalCOFI 
subdomain,” for which we use the cruise data for tem- 
perature and salinity as a time-independent picture of 
the ocean. Further data (Leetmaa Pacific Ocean Analysis 
provided by the Climate Diagnostics Center http: //w. 
cdc. noua.gov/cdc/datu. leetmau. html) are used to fill in the 
ocean’s initial state outside this region in a smooth way. 

Before merging the two data sets, we confirmed that 
the vertical structure of the Leetmaa data compared well 
with the CalCOFI data for July 97. We merged the two 
data sets by making an objective map over the entire 
model domain of the anomalous temperature and salin- 
ity fields defined as Leetniaa minus CalCOFI. Merging 
data sets during other cruise periods is not always prac- 
ticable in this way, and further treatment of the data is 
required. For example, for the February 1998 cruise the 
vertical analysis revealed some discrepancy in the pro- 
files at depth in both temperature and salinity around 
the perimeter of the CalCOFI subdomain. This is due 
to the smoothing implicit in the Leetmaa data, which is 
an assimilation of data with an ocean model. The salin- 
ity data used in the assimilation are inadequate to prop- 
erly resolve the vertical structure in the proximity of the 
coast. The horizontal gradients in density produced by 
these discrepancies generate strong adjustment currents 
at depth, which are artificially induced by the match- 
ing. We therefore computed a mean vertical profile 
anomaly for temperature and salinity in the CalCOFI 
subdomain and subtracted this anomaly from all Leetmaa 
data. We then defined a horizontal anomaly as CalCOFI 
data minus Leetmaa at each depth. Before objectively 
mapping the anomalies on the entire model grid, we 
also fit a smooth plane to account for horizontal large- 
scale background gradients in temperature and salinity. 
This initial guess will subsequently be corrected by the 
inverse solution. 

The initial velocity field for the model is also critical 
in that it should be nearly geostrophically balanced with 
the horizontal density gradients. We initially computed 
geostrophic currents from the density fields. We assumed 
a level of no motion at around 1,000 m, since we know 
that the core of the CCS can easily extend down to 500 
m with velocities on the order of 0.2 cm/sec (Chereskin 
and Trunnell 1996). The problem with this calculation 
is that the initial kinetic energy state of the model is 
not in equilibrium, and integration over time shows a 
sharp spin-up of the velocity field during the first day. 
In order to compute sensitivity to initial conditions with 
the inverse method, it is not useful to allow this spin- 
up process. Therefore we have computed the initial ve- 
locity field by integrating the model forward in time 
for half a day, keeping the density constant and with no 
forcing. This second approach insures a more balanced 
energetic state in the initial condition. We eventually 
will correct this first-guess initial velocity state by using 
the inverse method. 

For the forcing fields we use Levitus climatology for 
heat fluxes and COADS monthly wind stress. The time 
span of the cruise is about three weeks. In later exper- 
iments we plan to investigate the sensitivity to higher 
frequency in the forcing and how this affects our fitting 
and forecasting time scales. 

Basis Functions for Assessing Sensitivity 
As described in the section “Inverse Method Fitting 

Technique,” we project the error field between model 
and observed initial conditions onto a reduced space. 
The optimal basis to be chosen for this projection is not 
known, so we arbitrarily picked the Fourier basis sets of 
sines and cosines for horizontal structures as a first try. 
In the vertical, we used empirical orthogonal functions 
(EOFs) of the difference between CalCOFI observations 
and model-derived temperature and salinity profiles from 
the base run from first-guess initial conditions. These 
vertical modes tend to show maximum variability at 
roughly 100 m, with about 70% of the variance ex- 
plained by the first EOF and 20% by the second. 

Initial tests of the model runs’ sensitivity to slight 
changes in the initial conditions when we used these 
basis functions showed strong nonlinearity in the upper 
ocean. That is, a large-scale, small-amplitude pertur- 
bation in temperature or salinity resulted in a time- 
dependent perturbation from the base run that had large 
amplitudes at the grid scale after only a few days. We 
traced this nonlinearity to the model KPP mixed-layer 
parameterization (Large et al. 1994), which gives a time- 
and space-dependent vertical diffusion coefficient based 
on a number of criteria. Since this strong nonlinearity 
would complicate the linear fitting procedure, we set 
the vertical diffusion to be a constant chosen to yield 
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reasonable mean and eddy variance states. When surface- 
forced mixed-layer processes are addressed in hture work, 
we plan to reexamine the KPP framework in the con- 
text of the linear inverse. 

Results of the Inverse 
We ran a total of 500 perturbation runs for temper- 

ature and salinity, resolving up to six wavenumbers in 
each horizontal direction and three vertical modes. Each 
model run is sampled in time as the CalCOFI cruise 
sampled the real ocean. Each perturbation run is the 
model's forecast for the cruise from a slightly different 
initial state. 

In the application of the inverse, we also need to 
assign rnis fitting error to each datum. The error in- 
cludes both observational error and representational 
error, which comes from the inability of the model 
to reproduce all the physical processes seen in the data 
(e.g., internal waves). Our first fitting attempt used 
a constant rms-error-bound for each observation. 
However, the results (fig. 2) tended to place inore em- 
phasis on fitting the coastal station data where the mis- 
match is highest. Since we anticipate that slow 
open-ocean eddies will be better resolved by model 
physics than fast shallow-water coastal eddies, we next 
attempted to allow a larger fitting error in the coastal 
region than offshore. 

In order to better minimize the misfit in the deep 
ocean, we redefined an rms-error-bound map based on 
the spatial distribution of the station, with larger error 
for coastal than offshore stations. Since the inverse is a 
linear method, we also took into account the level of 
nonlinearity of each individual station in the rms-error- 
bound map. A test of the nonlinearity can be obtained 
by rerunning many of the perturbation runs with the 
opposite sign of the perturbation amplitude. The dif- 
ference in the response to the positive and negative per- 
turbations is an estimate of the nonlinearity in the 
response. If we map this variance horizontally we see 
that nonlinearities are stronger in the coastal region, as 
we would expect. An error variance reduction of 68% 
was obtained with this new rms-error-bound map def- 
inition, and a better fit of the offshore eddies was 
achieved, as can be seen in figure 3. 

Figure 4 shows the time-dependent map of 50 m tein- 
perature from the model run from the corrected initial 
state for the CalCOFI cruise in July 1997. The slow 
evolution of the larger mesoscale eddies offshore and the 
more rapid evolution of the snialler eddies nearshore 
suggests that we have a much better chance of skillfully 
fitting the offshore thermocline eddies than the near- 
coastal squirts and jets with the available data. More 
highly resolved observations in space and time will be 
needed for near-coastal fits. Likewise, processes in the 

Temperature comparison ( nns map #2 ) 

-* calcofi 

dG Y Onshore warm core eddy 
20 

18 - 
g 1 6 -  

$14- 

12 - 
10 

- 

D 

- 

8 -  
deep coastal deeo coastal deeD I 

l"80 182 184 186 188 190 192 194 196 198 
station 

Figure 3. 
error-bounds that are larger for near-coastal data than for deep-ocean data. 

Same as figure 2 but for inverse solution using observational rms- 

surface mixed layer are not skillfully inodeled here be- 
cause time-dependent surface forcing is not included 
and because of the limited oceanographic data. 

TESTS OF THE BIOLOGICAL MODEL 
The biological fields are strongly influenced by the 

physical variations. Therefore, once a physics fit is com- 
plete, it can be used to drive the biological model as a 
first test. The first SeaWiFS images were collected in 
September 1997, so our tests of the July 1997 physical 
field fits are not suitable for testing the ecosystem model. 
The best-sampled CalCOFI period after SeaWiFS began 
is February 1998 (cruise 9802), so we began testing the 
4D biological model for that period. We first want to 
understand how sensitive the biological model is to the 
various ternis that influence it. 

We created an initial chl a field for the CalCOFI 
domain from daily 9 kni SeaWiFS imagery collected 
during the cruise 9802 period. A 5-day running aver- 
age was applied to the resulting 19-day, 2D chl a time 
series to insure minimal pixel dropout. Remaining holes 
in the images were removed by iteratively averaging 
from the hole edges into the hole centers. Finally, the 
2D time series was interpolated to the ROMS West 
Coast model grid. For the purpose of initializing the 3D 
chl a field, we selected the first 2D field in the averaged 
time series, corresponding to the 5-day average centered 
around day 3 of the 9802 cruise, and calculated the sub- 
surface chl a distribution. Following Morel and Berthon 
(1 989), this calculation produces a Gaussian distribution 
of chl a between the surface and the light penetration 
depth as defined by the SeaWiFS chl a concentration 
(fig. sa).  We set the chl a concentration to zero for all 
depths greater than the penetration depth. Vertical in- 
tegration of the 3D model field reproduces the hori- 
zontal distribution as seen by SeaWiFS (fig. 5b). The 
3D chl a field was added to the physical model as a pas- 
sive tracer, and 30-day model runs were made with and 
without diffusion. 
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Figure 4. 
rms-error-bounds larger in the near-coastal region. 

Time sequence of model temperature at 50 m depth from the case where the model's initial conditions have been corrected by the inverse method with 
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Figure 5. Comparison between a, raw 5-day average SeaWiFS image of chi a (integrated from the surface to one optical depth) and b, SeaWiFS-derived model 
initial condition of chi a (integrated from surface to ocean bottom) for the beginning of 9802 CalCOFl survey. SeaWiFS image contours range from 0.01 in the open 
ocean to peak values near 0.4 in the shallow-water regions. Model image contours are proportional to SeaWiFS by an unspecified factor. 

3D Ecosystem Model Evolution 
Examination of the SeaWiFS record for the 9802 

period reveals a persistent chl a signature in the coastal 
waters. In animations of both the SeaWiFS imagery and 
model output, this coastal chl a is generally moved north 
or south along the coast with agreement between the 
two data sets as to direction. As would be expected, 
without replacement of the chl a via production, the 
modeled chl a tracer is quickly lost from the coastal wa- 
ters and transported either offshore or to deeper depths. 
The pattern of movement is different depending on 
whether vertical or horizontal diffusion is present in the 
physics, but the end result, without active biological pro- 
duction, is still a general loss of chl a from the coastal 
surface waters. 

We are now investigating how various pathways in 
the 7-component model affect the spatial distribution 
of chl a in the model. Starting at the simplest: chl a and 
phytoplankton with uptake of nitrate and parameterized 
loss, we intend to add components and pathways incre- 
mentally until we have the full 7-component model 
running over the CalCOFI domain. Although the full 
model has already been run successfully, this approach 
will allow us to examine the biological response of the 
model while comparing the results to both the CalCOFI 
9802 data set and associated SeaWiFS imagery. The in- 
cremental approach will also allow us to rigorously de- 
termine many of the rate and flux parameters associated 
with the model. 

1D Ecosystem Model Performance 
Because many of the parameters in the ecosystem 

model are poorly known, we have investigated the mod- 
el's sensitivity over a wide range of parameters. Our ap- 
proach has been to use a one-dimensional mixed-layer 
model that has been coupled to the ecosystem model. 
We have tested this model at  two extrema in the 
CalCOFI domain, the coastal and the offshore regions. 
The model is initialized with climatological profiles of 
temperature, salinity, and nitrate that were obtained from 
each of the two regions. The climatological profiles are 
also used as nudging fields for the temperature, salinity, 
and nitrate profiles. The nudging time scale is set to a 
constant 5 years. All other model variables are set to a 
constant value and are not nudged. In order to further 
diagnose the model's results, we added an oxygen com- 
ponent to the model to track the effects of the reminer- 
alization process. The oxygen value is set to the saturation 
value at the surface for the given SST. The simulations 
are carried out for 10 years, which is enough time to 
allow the model to develop a steady seasonal cycle. 

By reducing the ecosystem model testing to a 1D 
problem, we are able to examine many cases by using 
different parameter sets. The model's results are com- 
pared against the climatological profiles of temperature, 
density, nitrate, chl a, and oxygen that were obtained 
from the CalCOFI data set. An example of one such 
comparison (fig. 6) demonstrates that the model is ca- 
pable of resolving several of the observed features. The 
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Figure 6. Comparison between 1950-99 mean seasonal cycle CalCOFl offshore profiles (right) and 1 D mixed-layeriecosystem model simulation with seasonal 
cycle climatological forcing (left). Plotted are (top to bottom) temperature, density, nitrate, chl a, and oxygen profiles from 0 to 250 m and from January to December. 
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mixed-layer model is capable of resolving the seasonally 
varying SST and mixed-layer depths. The nitracline is 
well established at about 100-150 m, with very low con- 
centrations at the surface. Surface chl a is highest in the 
winter, with an established chl a maxinium at  about 
80-90 m. Unfortunately, the chl a climatologies had to 
be averaged over 2 months in order to achieve a smoothly 
varying chl a field. One issue that has yet to be resolved 
is why the model creates such a thin chl a maximum at 
depth while the data suggest a wider feature. Part of 
this discrepancy may be due to the averaging of many 
profiles to obtain the climatologies of the data set. The 
oxygen profile from the model compares well with the 
climatologies and shows a gradual decline in oxygen lev- 
els with depth and a sub-mixed-layer oxygen maximum 
during the summer. 

We are now configuring the 1D model to the coastal 
CalCOFI clirnatologies. After we have achieved good 
agreement between both off5hore and coastal locations, 
we will compare the resulting parameter sets to try to 
resolve the differences between regions. The parameter 
sets which result from the 1D simulations will be used 
as a starting point for the full 3D data assimilation of 
both the circulation and ecosystem models. 

S U M M A R Y  AND O U T L O O K  
Our initial test of the fitting procedure successfully re- 

duced the error variance of the model-data misfit in tem- 
perature and salinity by nearly 70% during the July 1997 
CalCOFI cruise. These encouraging results suggest that 
we should eventually be able to reduce the misfits even 
further by including adjustments to horizontal velocity 
and sea level. We are presently preparing the TOPEX, 
ADCP, and drifter data to additionally constrain the fit. 

Our success so far is geared toward deep-ocean ther- 
mocline eddies, which evolve slowly and geostrophically. 
Progress in fitting the shelf-slope eddies will be hindered 
by limitations in the volume of data needed to constrain 
these faster and smaller-scale features. Progress in fitting 
the upper-ocean mixed-layer variations will depend on 
the quality of surface-forcing data from atmospheric 
analyses or direct observations, because these oceanic 
features are strongly influenced by direct atmospheric 
forcing rather than by intrinsic oceanic instabilities. 

Fits of the ecosystem variations are likewise limited 
by the small amount of subsurface data available and the 
great uncertainties in coupling parameters between the 
biological variables. Nonetheless, since the physical vari- 
ations control the biological variations to a large degree, 
we expect to successfully match the available data to 
within error bars. 

Once the fits are complete for a given survey, we will 
break down the dynamical and ecosystem balances that 
hold in the model and assess their consistency with other 

modeling studies. The true test for the model and the 
inverse technique is to forecast independent data in sub- 
sequent CalCOFI hydrographic and ADCP surveys, 
TOPEX data sets, and SeaWiFS observations. Since there 
was monthly sampling (albeit limited spatial sampling) 
during the 1997-98 El Niiio, we expect to be able even- 
tually to quanti@ predictive time scales for this region. 
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