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ABSTRACT 
Confidence intervals (CIS) are frequently used to com- 

pare true means of two populations in the following 
ways: (A) If two 95% CIS are overlapping, then it can be 
concluded that the two population means are the same. 
(B) When only one CI is available, it can be concluded 
that two means are equal if one sample mean is within 
the 95% CI of the other mean. But the level of signifi- 
cance (a) of these two procedures does not always equal 
the intended 5%. The statistical power of these two pro- 
cedures is unknown. This paper recommends another 
statistical procedure: (C), which is based on the CI of 
the difference (d )  of two population means: CI(d). In 
this simulation study, the actual level of significance 
and the statistical power of these three procedures are 
computed for equal sample sizes. Statistical distributions 
considered are normal, Poisson, gamma, and lognormal. 
The simulation results indicate that the a value is 0.005 
averaged over three continuous distributions (for Poisson, 
it is 0.06) for procedure A; 0.17 for procedure B; and 
0.05 for CI(d). Thus, when the true means are indeed 
different, B is the most powerful procedure, and A is the 
least powerful procedure. 

RESUMEN 
Los intervalos de confianza (IC) para comparar la 

media verdadera de dos poblaciones se usan frecuente- 
mente de dos maneras. (A) Si dos IC a1 95% traslapan, 
se puede concluir que la media de las dos poblaciones 
no es la misma. (B) Cuando s610 se dispone de un IC, 
puede concluirse que las dos medias son iguales si una 
de &stas se encuentra dentro del IC de 95% de la otra 
media. Sin embargo, el nivel de significancia (a) de estos 
dos procedimientos no siempre es igual a1 5% deseado. 
La potencia estadistica de estos dos procedimientos es 
desconocida. Esta contribucibn recomienda otro pro- 
cedimiento estadistico: (C), basado en 10s IC de las difer- 
encias ( d )  de dos medias poblacionales: CI(d). En este 
estudio, usamos simulaciones y calculamos el nivel de 
significancia real y la potencia estadistica de estos tres 
procedimientos (para muestras de tamaiio igual). Se usa- 
ron distribuciones normal, Poisson, gama y lognormal. 
Los resultados de las simulaciones indicaron que para el 

procedimiento A 10s valores a promediados en tres dis- 
tribuciones continuas fui: de 0.005 (0.06 para la distri- 
bucibn Poisson), 0.17 para el procedimiento B y 0.05 
para el procedimiento C. Consecuentemente, cuando 
las medias verdaderas son diferentes, el procedimiento 
con mayor potencia es el B, mientras que el de menor 
potencia es el A. 

INTRODUCTION 
In the scientific literature, summary statistics such as 

averages and standard errors are often used to construct 
confidence intervals (CIS) for the true mean under the 
assumption of the normal distribution of the sample 
mean. Frequently, CIS are used to compare means of two 
populations in the following ways; (A) If two 95% CIS 
are overlapping, it can be concluded that the two pop- 
ulation means are the same. (B) When only one CI is 
available, it can be concluded that two means are equal 
if one sample mean is within the 95% CI of the other 
mean. Although these two procedures are convenient 
and popular ways of making inferences about popula- 
tion means, their level of significance (a) does not al- 
ways equal the intended 5%. 

The correct statistical procedures should be those based 
on the difference of two sample means: for example, t 
statistics and the CI for the difference of population 
means: CI(d). When CI(d) is used, and if the CI(d) con- 
tains zero, it can be concluded that the two population 
means are the same. Thus there are actually three pro- 
cedures to be considered: procedure A is the overlap- 
ping of two CIS; procedure B is the inclusion of one 
sample mean in the CI from the second sample; and pro- 
cedure C is the CI(d) based on the difference of two 
sample means assuming normal distribution. 

The procedure used is important because it affects 
conclusions. Take, for example, Hunter and Leong’s 
(1981) comparison of the mean batch fecundlty of north- 
ern anchovy (1 5-1 9g) that matured in the laboratory 
and in the sea (figure 1): 

Locality rz Mean (2SE) 95% CI 

Laboratory 38 8910 (1210) (7700, 10120) 
Sea 17 6800 (1150) (5650, 7950) 
Difference 2110 (1669) (441, 3779) [Manuscript received February 7, 1994.1 
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Figure 1. Confidence intervals based on the individual sample mean fecun- 
dity of anchovy that matured in the laboratory and in the sea. The Cl(d) is the 
confidence interval based on the difference of two sample mean fecundities. 
Low and high are the lower and upper 95% confidence limits. 

The two mean batch fecundities are not significantly 
different if procedure A is used, but they are significantly 
different if B or C is used. Clearly, procedure C is the 
preferred choice, since it is known that the confidence 
level is 95%. If A or B must be used, however, the in- 
vestigator should be aware that the level of significance 
can affect the result. 

The purpose of this paper is to compare these three 
procedures. A simulation study was conducted to com- 
pute the actual confidence level (1-a), and the power 
of procedures A and B was compared to that of proce- 
dure C. Note that the level of significance (a) is the 
probability of claiming that the two population means 
are different by rejecting the null hypothesis that two 
population means are equal when, in fact, they are the 
same. This is a wrong conclusion and is the so-called 
type I error. The power is also the probability of re- 
jecting the null hypothesis that two means are equal, 
when the two population means are indeed different. 
Thus the power is the probability of making the right 
decision at the expense of a value. While the a value is 
normally predetermined, the power of a procedure de- 
pends not only on the a value, but also on the magni- 
tude of the difference between two population means 
and the sample size. Statistical power has been recog- 
nized as an important element in evaluating fishery pop- 
ulation estimation procedures (Peterman 1990; Solow 
and Steel 1990). But the power must be considered to- 
gether with the level of significance. 

In the simulation, all 95% CIS were computed on the 
assumption of normally distributed sample means for 
four underlying distributions: normal, Poisson, gamma, 
and lognormal. The density functions are given in the 
appendix. Different statistical distributions for various 
sample sizes ranging from 5 to 100 were included in the 
simulation to check the robustness of the CI(d). The 
CI(d) is based on the normal assumption, which is valid 

only for large sample size. Here, CI(A) is robust if it main- 
tains a 95% confidence level as intended. 

In this paper I do not provide the optimal CI of the 
difference of population means for each distribution. I 
refer the reader to Barr 1969 and Nelson 1989 for nor- 
mal; Casella and Robert 1989 for Poisson; Withers 1991 
for gamma; Land 1988 for lognormal; Douglas 1993 and 
Weerahandi 1993 for a generalized CI; and Beal 1989 
for CI and sample size in general. Barr (1969) and Nelson 
(1989) dealt with the overlapping problems for the nor- 
mal case only. Ideally, distribution-specific CIS should 
be sought, but some of the procedures are complex and 
difficult to apply. Although the normal-based CIS are 
convenient, their limitation should be recognized. They 
should be used with caution, particularly when sample 
size is small. 

METHODS 
Suppose that one sample of size (a,) is taken !&om each 

of two populations with mean (pi) and standard devia- 
tion (ai), i = 1,2.  The goal is to determine whether the 
population means are equal, i.e., p, = p2 . Each of the 
three procedures would lead to the conclusion that the 
two averages are not significantly different if 

A. CI, and C12 are overlapping, where CI, = 

(1) 
- xittdLa/pR, for i = 1, 2 

where dfi (degree of freedom) = ni- 1, and s- is the 
standard error of the sample mean. 
B. The sample mean from one data set is within the 
CI computed from the other data set (C12). 

x ,  

'lE "2 = X2'tdf,,a/2s?Z, (4 
C. The CI(d) of the difference of the population 
means contains zero. The CI(d) was computed from 
the difference of two sample means and the standard 
error of the difference. This is the confidence inter- 
val based on the normal distribution of the sample 
mean. The 95% CI for A = pl - p2 is 

cl, = (K,-'2)*tdf;a/,$z,-z2 (3) 
where df = (al - 1+ n2- 1) if variances are equal. If 
variances are not equal, the formula for the d.f. is 
available from statistics books (Zar 1984). 

The formulas related to the standard error of the sam- 
ple mean have not been given because they can be found 
in any statistics reference. Equations 1 to 3 are used for 
three underlying distributions. In all cases, sample sizes 
were set to be equal, i.e., n, = n2. 

In the simulation, data are generated from each of the 
distribution functions for sample sizes ranging from 5 to 
100 (actual sample size may differ for different distri- 
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TABLE 1 
Mean ( p )  and Standard Deviation (a) 

for Each Distribution Used in the Simulation 

Distribution Parameters* 

Normal 

Poisson 

Gamma b(sca1e parameter) = 1 

pl = 1, and k2 = 1, 1.5, 2, 3, 4, and 5 

mean = variance: pl = 0.5, and 
p2 = 0.5, 1, 2, 5, and 10 

pl = hc = 3 and 
p2 = 0.5, 1, 1.5, 2 ,  2.5, and 3 
where c is the shape parameter 
p, = 0 and p2 = 0, 0.5, 1, and 2 

u, = u2 = 2 

Lognomial 

*p, is the mean under the H, and p,2 is the mean under the Ha. 

u, = u2 = 1 

butions). To compute the a values, two independent 
samples were generated from distributions with same 
mean value. To compute f3 values, two independent sam- 
ples were generated from two distributions with differ- 
ent mean values. One thousand iterations (m) were run 
for each comparison, and the actual level of significance 
(a) under the null hypothesis Ho: pl = p2 - p. was 
computed for various k values as: 

aA = (number of two CIS not overlapping)/m (4) 

aB = (number of Xls  is not contained in C12)/m (5) 

and 

ac = (number of CI(d)s not containing zero)/m 

- 

(6) 
The power of the three procedures was also computed 

for various sample sizes under the alternative (Ha): 
p2 # pl, where pl was kept constant and p2 varied. 
The confidence level for each individual CI was 95%. 
Under Ha: b2 # pl, data were generated from two pop- 
ulations, one with mean p2, and one with pl. I com- 
puted PA, pB, and pc in the same way as the a values 
(equations 4-6). 

The parameters for each distribution are given in 
table 1. The a values were computed from two samples, 
each taken from populations with identical mean val- 
ues indicated by p2 in table 1. Samples from the popu- 
lation with mean values equal to p2 are compared with 
samples from the population with mean values equal to 
p1 to compute the power. 

RESULTS 

Normal Distribution 
The a values for pl = p2 = 1, 1.5, 2, 3, 4, and 5 

were computed for sample sizes 5 to 100, even though 
the difference of p1 and p2, not the actual values of k1 
and p2, is relevant. The standard deviation is set at 2 
(table 2). For procedure A, the computed a values are 
less than 0.05, with an average of 0.005. For procedure 

TABLE 2 
Level of Significance (a) ,  Confidence Level ( I -a) ,  and 

Overall Power for Three Procedures, for Each 
Statistical Distribution 

Procedures 

A B C Hypothesis 

Normal 

1-(Y 0.995 0.85 0.95 
Power relative 

(Y 0.005 0.15 0.05 H": = ~2 

low high Ha: P2 f PI 

(Y 0.06 0.17 0.05 H,: IJ.1 = P2 

low high Ha: F2 f P1 

(Y 0.006 0.16 0.05 Ho: PI = F2 

low high Ha: P2 # F1 

(Y 0.004 0.19 0.05 H,: PI = P2 

low high for n < 30 Ha: P2 f F1 

to option C 

Poisson 

1 -a 0.94 0.83 0.95 
Power relative 

Gamma 

1 -(Y 0.994 0.84 0.95 
Power relative 

to option C 

to option C 

Lognormal 

1 -a 0.996 0.81 0.95 
Power relative 

to option C 

B, the opposite is true, and the computed a values are 
greater than 0.05, with an average of 0.15. For proce- 
dure C, the a values are close to 0.05, as expected. In 
procedure A, the true a values are not affected by the 
sample sizes, as they are in procedure C. In procedure 
B, however, the level of significance is affected by the 
sample size. The a values for sample sizes 110 ranging 
from 0.12 to 0.14 are smaller than those ranging from 
0.14 to 0.17 for larger sample sizes. 

The power values were computed for p2 = 1, 1.5, 
2, 3,  4, and 5, compared to p1 = 1. Again, u = 2 and 
sample size = 10, 20, . . . , 50, 100. Procedure B is the 
most powerful of the three, and A is the least powerful, 
regardless of sample sizes, if the population means are 
different (table 2 and figure 2). For example, when p2 
= 2, compared to pl = 1, for sample size 30, the power 
is 0.18 for procedure A, 0.69 for procedure B, and 0.5 
for procedure C. The difference in power among the 
three distributions is more pronounced for a small sam- 
ple size and a small difference in mean values. 

Poisson Distribution 
The Poisson distribution (equation A2) is often used 

to model the distribution of counts of rare events that 
are randomly distributed in time and space, e.g., the 
number of fish schools in a certain area during a cer- 
tain season. The Poisson distribution has only one pa- 
rameter: p. = mean = variance. The shape of the dis- 
tribution depends on k ;  for large k ,  the distribution 
tends to be symmetric and close to the normal distri- 
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Figure 2. Power for procedures A, B, and C at different mean values (p2) 
compared to p, = 1 ; u = 2 for sample sizes ranging from 10 to 100 for normal 
distribution. 

bution. In the simulation, the a values were computed 
for p = 0.5, 1, 2, 5, 10 and sample sizes 5, 10, and 50 
(figure 3 ) .  Procedures A and B are sensitive to the sam- 
ple size and mean values: the level of significance (a) de- 
creases as the sample size and the mean values increase. 
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Figure 3. 
mean values for sample sizes 5, 10, and 50 for Poisson distribution. 

Level of significance (CY) for procedures A, B, and C at different 

But for procedure C, the a values (slightly less than 0.05) 
are independent of sample size and the mean values. 

The (x value averaged over all sample sizes and mean 
values was 0.06 for procedure A, 0.17 for procedure B, 
and close to 0.05 for procedure C (table 2 and figure 3) .  
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(p2) compared to p, = 0.5 for sample sizes ranging from 10 to 100 for 
Poisson distribution. 

Although the cx values for sample sizes >10 are sim- 
ilar for procedures A and C,  A is less powerful than C, 
regardless of sample sizes (figure 4). For example, for 
p2 = 1 compared to pl = 0.5 for sample size 30, the 
power is 0.3 for procedure A, 0.84 for procedure B, and 
0.57 for procedure C. 

Gamma Distribution 
The gamma distribution (equation A3) has two pa- 

rameters (b,c) with mean = bc, and variance = b’c. 
Without loss of generality, the scale parameter, b, was 
set at 1 (this is the exponential distribution). The shape 
of the gamma distribution tends to be symmetric as pa- 
rameter c increases. Data were generated from six pop- 
ulations in which b = 1, and c = 0.5, 1, 1.5, 2, 2.5, or 
3 compared to samples from one population with b = 1 
and c = 3 (or pl = 3). 

For procedures A and C, the computed cx values are 
independent of the mean values, with an average of 0.006 
for A and 0.05 for C. For procedure B, the computed 
cx values decrease as the sample size and the mean val- 
ues increase (figure 5). The average of all the cx values 
is 0.16 (table 2). Procedure B is the most powerful pro- 
cedure, and A is the least powerful, regardless of sample 
size and mean values (figure 6). For example, for 
p2 = 2 compared to pl = 3,  with a sample size = 30, 
the power is 0.41 for procedure A, 0.85 for procedure 
B, and 0.72 for procedure C. 

Lognormal Distribution 
The lognormal distribution is often used to describe 

abundance per unit area (Meyers and Pepin 1990; Lo et 
al. 1992; equation A4). A random variable, y ,  follows 
lognormal i f x  = In(y) is normal (p, u2). 

For each of three procedures, a was computed for 
pl = p2 = 0, 0.5, 1, and 2; u1 = u2 = 1; and sample 
size IZ = 5, 10, 30, and 50. The a values are indepen- 
dent of sample size, with an average of 0.004 for pro- 
cedure A, 0.19 for B, and 0.05 for C. For procedures 
A and B, the variation of cx values increases as mean value 
increases (table 2, figure 7). 

Procedure A is the least powerful of the three. For 
sample sizes <30, procedure B is most powerful. For 
sample sizes 230, procedure C is most powerful (figure 
8). For example, for sample size = 30 and p2 = 1 com- 
pared to pl = 0, the power is 0.63 for procedure A, 0.81 
for procedure B, and 0.96 for procedure C. 

CONCLUSIONS 
Table 2 summarizes the simulation results for the level 

of significance and overall power for each of the four 
distributions. 

The cx value of procedure A is 0.005 for normal, 
gamma, and lognormal distributions. Thus procedure A 
probably leads to the conclusion that two means are 
the same even though they are different. But if the two 
CIS do not overlap, one can be much more than 95% 
sure that the population means are different. The cx value 
of procedure A is not sensitive to sample size and mean 
values except for the Poisson dstribution. For the Poisson, 
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Figure 5. Level of significance (a) for gamma distribution ( b  = 1) for pro- 
cedures A, B, and C at different mean values for sample sizes ranging from 
5 to 50. 

the 01 is large for small sample size and small mean val- 
ues; it decreases as the sample size or the mean values 
increase, with an overall average equal to 0.06 (figure 3) .  

The 01 value of procedure B is 0.17 averaged over all 
the distributions. Thus procedure B invites one to con- 
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Figure 6. Power for procedures A, 6, and C at different mean values (p2) 
compared to p, = 3 for sample sizes ranging from 5 to 100 for gamma distrib- 
ution. 

clude that two population means are different when, in 
fact, they are the same. For the normal distribution, 
the 01 values differ for sample size < or > 10, and are 
not affected by the mean values. For Poisson distribu- 
tion, 01 values decrease as the mean values increase for 
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small sample size (n = 5). For gamma distribution, the 
(Y value of procedure B decreases as the sample size or 
the mean value increases, particularly for a sample size 
equd to S. 

Of the three procedures, B is most powerful, and A 
is least powerful if the population means are indeed 
different. The difference in the power values between 
procedures A and B results from the difference in a 
values; thus one should not conclude that procedure B 
is “better” than A based on power unless both A and B 
have the same a value. As expected, power increases 
with sample size and the difference between the means 
for all procedures. 

Procedure C maintains the assumed confidence level 
for the four distributions when the sample size is greater 
than 10. Therefore, CI(d) is a robust procedure that can 
be used for these three nonnormal distributions if the 
sample size is moderate. 

In the example of comparing the mean fecundity of 
anchovy, the fact that procedures A and B indicated dif- 
ferent conclusions is not surprising now that we know 
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Figure 8. Power for procedures A, 6, and C at different mean values (p2) 
compared to p, = 0; u = 1 for sample sizes ranging from 5 to 100 for lognor- 
mal distribution. 

that procedure A has a low level of significance which 
leads to claiming that the two means are not statistically 
different, whereas procedure B does the opposite. 

For the lognormal distribution, if the variances are 
not equal, variance should be included in the compu- 
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tation of the CI because the mean of y is equal to 
exp(p+a2/2). The CI should be one for exp(p+a2/2). 
The latter expression is in terms of the mean and vari- 
ance of x. 

For future research, it would be useful to 
obtain the level of significance of the original CI to 
achieve a 5% level of significance for procedures A 
and B for other distributions as reported by Nelson 
(1989) for the normal case 
investigate the effect of unequal sample sizes on the 
level of significance and power of the three proce- 
dures 
develop procedures for comparing two population 
means when the standard error is given but not the 
sample size. 
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APPENDIX 
Density functions used in the simulation analysis 

Normal 

Poisson 

f(x;A) = A”e-‘/x! 

for x = 0, 1, 2, 3,  . . . ; 0 < A 

Gamma 

for 0 < x; 0 < b,c 
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