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ABSTRACT 
Because pelagic fish eggs are usually distributed 

contagiously, the mean and variance estimated 
from egg surveys are often driven by a few samples 
of very high abundance. “Sampling” from simu- 
lated negative binomial data sets ( n  = 20 to 1,000, 
k = .1 to .4) showed that the sample mean and 
variance were both highly dependent on the maxi- 
mum observed value. As  contagion ( k  ’) in- 
creased, or n decreased, the chance of a sample 
including rare, high values decreased. In conse- 
quence, nominally 95% confidence limits excluded 
the population mean more than 5% of the time and 
tended to underestimate the mean more often than 
to overestimate it. Log-based parametric estimates 
were superior to those assuming a normal distri- 
bution of sample means, but only at k = .4 and n 
2 500 did the error rate approach 2.5% in both 
tails. Since contagion in pelagic fish egg distribu- 
tions is often greater than this ( k  < .4), and afford- 
able sample size usually small (n  < l,OOO), a 
method was sought that would improve accuracy 
by increasing the asymmetry of confidence bounds. 
One potential methodology is Easterling’s “conso- 
nance regions,” applied here to samples from a 
large set of Engraulis mordax egg data. 

RESUMEN 
Debido a la distribucion contagiosa de 10s hue- 

vos de peces pelagicos, el promedio y la varianza 
estimados de recuentos de huevos son a menudo 
determinados por un bajo numero de muestras con 
alta abundancia. Los “muestreos” de varios con- 
juntos de datos simulados de distribucion binomial 
negativa ( n  = 20 a 1000, k = 0.1 a 0.4) indican que 
el promedio y la varianza de la muestra son ambas 
altamente dependientes del maximo valor obser- 
vado. A medida que el grado de contagio ( k - ’ )  
aumenta o n disminuye, la probabilidad que una 
muestra contenga valores altos, de baja frecuen- 
cia, disminuye. Consecuentemente, 10s limites de 
confidencia del 95% excluyen el promedio de la 
poblacion en un 5% de 10s casos y tienden, en 
general, a subestimar el promedio. Aun cuando las 
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estimaciones parametricas con distribucion loga- 
ritmica resultaron ser superiores a aquillas para las 
cuales se supuso una distribucion normal, el error 
alcanzo unicamente un 2.5% en cada cola cuando 
k = .4 y n 2 500. Dado que el grado de contagio 
en las distribuciones de huevos de peces pelagicos 
es generalmente mayor ( k  < .4), ye el tamano de 
muestra es generalmente pequeiio ( n  < lOOO), se 
busco un mitodo que mejorara la exactitud por 
medio de un aumento en la asimetria de 10s limites 
de confidencia. El mitodo de Easterling o “me- 
todo de regiones consonantes” ha sido usado en 
este trabajo con muestras provenientes de un alto 
numero de datos de huevos de Engraulis mordax. 

INTRODUCTION 
The usual method of computing confidence in- 

tervals rests on the assumption that the distribution 
of (theoretical) sample means is normal (i.e., that 
the central-limit theorem applies). Robust as this 
assumption is, the patchy distribution of fish eggs 
and larvae can give rise to sufficient contagion in 
survey data to cause significant departures (e.g., 
the mean of northern anchovy egg samples of n < 
60 tends to be skewed). 

Although statistics texts treat  the problem 
lightly, if at all, proposals for measuring precision 
in contagious data do appear in the fisheries litera- 
ture (e.g., Taft 1960; Zweifel and Smith 1981; Pen- 
nington 1983; Pennington and Berrien 1984; Jahn, 
in press). All the proposed methods deal in some 
way with the asymmetric distribution of sample 
means, but little has been done to quantify the 
error rates inherent in each. This has moderate 
consequences in most fisheries applications, be- 
cause sample size is typically held large to counter- 
act the effects of contagion and achieve good pre- 
cision. However, in research that enjoys less 
financial support, such as environmental impact 
studies, sample size is often set by factors external 
to the nature of the variability and is nearly always 
smaller than the investigator would wish for. 

For a given level of abundance, the definition of 
“small” sample size depends on the desired preci- 
sion and the degree of contagion. In this paper we 
demonstrate the interdependence of estimated 
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mean and variance, and use simulation to quantify 
the actual precision obtained from such estimates 
over a range of sample sizes and degrees of conta- 
gion common in coastal ichthyoplankton work. 
The simulation results, based on completely speci- 
fied negative binomial distributions, are compared 
with samples from large “populations” of real an- 
chovy egg data. We also briefly explore an alter- 
nate method of estimating precision that shows 
promise for small samples. 

METHODS 

Statistics 
Skewness (gl) and kurtosis (g2) were calculated 

according to procedures in Sokal and Rohlf (1969). 
Formulas used in computing parametric confi- 
dence limits were: 

rn +- t a*SE (1) 

rn exp { k ta [In( 1 + SE2/rn2)]} (2) 

where rn is the sample mean, ta the standard nor- 
mal deviate (here approximated as = 2), and SE 
the standard error of the mean. Formula 1 is the 
familiar method, which assumes a normal distri- 
bution of m. Formula 2, from Zweifel and Smith 
(1981), assumes the log-normal distribution of rn. 

Another method explored was the procedure of 
simultaneous model fitting and parameter estima- 
tion suggested by Easterling (1976), in which an 
array of parameters is employed in goodness-of-fit 
tests to define a two-dimensional region in which 
the data are consonant with the specified model. A 
full description of this procedure, as applied here 
using the negative binomial frequency distribution 
and x2 goodness-of-fit tests, is given in Jahn (in 
press). 

It should be said at the outset that Easterling’s 
proposal was not specifically for making popula- 
tion inferences, but rather for obtaining an objec- 
tive description of data. Our motivation for apply- 
ing the technique to a problem of inference was 
that it produces an asymmetry of fiducial limits that 
has the desired properties for small samples from 
contagious distributions. Easterling (1976) has 
shown that, for a given probability level, conso- 
nance regions will tend to be wider than parametric 
confidence intervals, the difference depending on 
the nature of the data. We have found that, with 
small sets of ichthyoplankton data as treated here, 
a probability of 0.2, or an 80% consonance region, 
gives an interval of comparable size to a 95% con- 

fidence interval, but with more appropriate asym- 
metry, as will be shown. 

Simulations 
To obtain an empirical estimate of the accuracy 

of parametric confidence limits, “sampling” was 
carried out on three simulated data sets, each dis- 
tributed as a negative binomial completely speci- 
fied by the parameters rn (the mean, set = 10 in all 
cases) and k (an inverse contagion parameter, set 
= 0.1, 0.2, and 0.4). The simulated populations, 
generated according to procedures given in Elliott 
(1971), consisted of 50,000 numbers each, suffi- 
cient to produce variances > 99% of asymptotic 
values (s2 = rn + rn2/k). From each population, 
1,000 random samples of n = 20,50,100,200,500, 
and 1,000 were taken, and their mean, variance, 
and maximum value recorded. 

Egg Data 
Real fish-egg abundance data came from surveys 

employing a 0.05 m2 vertically towed net, the 
CalVET sampler (Smith et al. 1985). The six 
CalVET surveys for 1980-85 took 5,338 samples, 
of which 2,311 were positive for northern anchovy 
(Engruulis rnordux) eggs. Ages of all eggs from 
each sample were estimated from stage of devel- 
opment and field temperature (Lo 1985). For sub- 
sampling purposes, the 3,027 (5,338 - 2,311) neg- 
ative stations were considered outside the spawn- 
ing area and omitted as “false” zeros’. The first (A) 
and second (B) whole days after spawning, and 
total eggs (T), were the three “populations” from 
which random subsamples of n = 20,46,100,200, 
and 500 were taken. The two smallest sample sizes 
correspond to the number of samples per cruise in 
a program of nearshore egg and larval surveys, 
wherein mean abundances have been reported 
with various measures of precision, including some 
methods used here (Brewer and Smith 1982; 
Lavenberg et al. 1986; Jahn, in press). 

RESULTS AND DISCUSSION 

Simulations 
For a given level of contagion, the range and 

symmetry of the distribution of sample means were 
(as expected) strongly related to sample size (Fig- 
ure 1). The width of the range of the central 95% 
of sample means was well predicted from popula- 
tion parameters as 4 standard errors of the mean 

‘By “false” zeros we mean that these observations were taken outside the 
spawning area and not by chance from within i t .  (For a more thorough treat- 
ment see Smith 1973.) This oversimplification will have alight consequence\ 
for the biological character of our example data sets. but the allocation of  
zero5 i s  a problem in fisheries practice that rivals that of  precision. 
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Figure 1 

(approximated as 4p/V k n ,  Table l),  but this inter- 
val was never precisely centered on the population 
mean. The asymmetry of the interval [(upper limit 
- p)/( p - lower limit)] varied inversely with both 
n and k (Table 1 and Figure 2). Although the dis- 
tribution of sample means is interesting and in- 
formative in a theoretical context, the real problem 
in practice is estimating population parameters 
from the information contained in a single sample. 

For all three simulated populations, as in the 
marine sampling environment, parameter esti- 
mates were highly dependent on relatively rare, 
high values. In small samples these extreme obser- 
vations can dominate parameter estimates; on the 
other hand, their absence can lead to severe under- 
estimates of the mean and variance. The depend- 
ence of these parameter estimates on the maxi- 
mum observed value is shown in Figure 3 for the 
case k = 0.2, n = 50. 

Overestimating the variance (and concomi- 
tantly, the mean) produces wide confidence inter- 

TABLE 1 
Summary Statistics of Sample Means from Negative Binomial 

“Populations” of 50,000 Numbers with p = 10 and Parameter k 
as Indicated 

UL - u 
n 

k = . I  

k = .2 

k = .4 

20 
50 

I00 
200 
500 

1000 

20 
5 0  

100 
200 
500 

1000 

20 
50 

100 
200 
500 

1000 

rn LL UL w 

9.9 1.15 26.25 25.1 
10.3 3.44 20.92 17.5 
9.9 4.90 16.66 11.8 
9.9 6.06 14.67 8.6 

10.0 7.51 13.07 5.6 
10.0 8.06 12.01 4.0 

9.9 2.70 21.70 19.0 
9.9 4.72 16.64 11.9 

10.0 6.10 14.89 8.8 
10.0 7.075 13.475 6.4 
10.0 8.07 12.01 3.9 
10.0 8.66 11.37 2.7 

---- 

9.9 4.05 18.70 14.65 
l(J.0 6.00 14.78 8.8 
9.9 7.02 13.10 6.1 

10.0 7.87 12.265 4.8 
10.0 8.58 11.56 3.0 
10.0 9.01 1 I .03 2.0 

4p(kn) ’’ p - LL 
~~ 

28.3 1.84 
17.9 1.66 
12.6 1.31 
8.9 1.19 
5.7 1.23 
4.0 1.04 

20.0 1.60 
12.6 1.26 
8.9 1.25 
6.3 1.19 
4.0 1.04 
2.8 1.02 

14.1 1.46 
8.9 1.20 
6.3 1.19 
4.5 1 .Oh 
2.8 1 .10  
2.0 I .04 

LL = 2.Sh percentile; UL = 97.Sh percentile; w = UL - LL; n = 
sample size; m = average of sample means. 

vals which, though imprecise, tend to be accurate 
in that they include the population mean. Con- 
versely, underestimating the variance often leads 
to confidence intervals that are too small and ex- 
clude the true mean. These trends account in prin- 
ciple for the distributions of samples producing 
confidence limits that were too low or too high 
(Table 2). For the same reason that the “curves” in 
Figure 2 are not smooth, the numbers in Table 2 
yield only approximate probabilities, but these 
should serve as useful indicators of the effects of 
sample size and contagion on measuring’precision. 

Ideally, 95% confidence limits should be higher 
than the true mean 2.5% of the time and lower 

+ k=.l 
o k=.2 

k=.4 

20 50 100 200 500 1000 
Figure 2 Asymmetry (see Table 1) of the distribution of sample means as a 

function of sample size (n) for three levels of contagion. k 
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Figure 3. Dependence of estimates of the variance and mean on maximum observed value. All samples were of n = 50 from a negative binomial population with 
mean = 1O;variance = 510 (k = .2). 

TABLE 2 
Summary of Samples (from 1000 Iterations) Giving Computed 

95% Confidence Limits (CL) That Excluded the Population 
Mean (p). 

k n=20 n=50 n=100 n=200 n=500 n=1000 - - - - - - - 
L H L H L H L H L H L H  

Formula1 .1 249 1 151 3 110 1 86 4 60 7 50 5 
.2 188 4 119 5 71 3 57 6 59 9 34 12 
.4 144 4 82 8 62 3 50 7 37 20 33 16 

Formula2 .1 162 22 YO 22 66 14 54 14 42 15 36 20 
.2 117 26 66 19 42 23 35 27 42 21 30 18 
.4 89 25 50 19 41 11 38 22 29 28 28 22 

Formula 1: rn t t, 9 SE 

Formula 2: m - exp{ 
where t, was approximated as = 2. 

L = number of upper CL’s that were lower than p; H = number of 
lower CL’s higher than p. 

t, v[ ln ( l  + SE2/rn2)]} 

than the mean 2.5% of the time; Le., the “tails” 
should be equal and add to 5%. For the simula- 
tions presented here (1,000 samples each), the tails 
should each average 25 samples. As shown in Table 
2, the low tail ( L )  was always > 25, and the high 

tail ( H )  usually < 25. The log-based method (for- 
mula 2) was superior to the conventional symmet- 
rical limits (formula l), but approached equal tails 
only at high n (2 500) and k (.4). Because the 
simulated values of k are realistic, and larger val- 
ues of n are often not, it is desirable to find a 
method that will further increase the asymmetry 
(shorten the low tail and lengthen the high) of com- 
puted confidence intervals. One promising ap- 
proach is applied to real data, below. 

Real Data 
The three “populations” of real anchovy-egg 

data (summarized in Table 3) were all positively 
skewed and peaked (leptokurtic), with large differ- 
ences between mean and median values. In all 
cases the variance exceeded the mean squared, im- 
plying a high degree of contagion with values of 
the negative binomial parameter k < 1. For various 
reasons, including the truncation of zeros and the 
composite nature of the data sets (amalgamation 
of several years’ sampling), the negative binomial 
distribution is only an approximate model for these 

TABLE 3 
Characteristics of Three Populations of Anchovy Egg Data Compiled from 2,311 Positive CalVET Tows from 6 Surveys, 1980-85 

Population Mean Median Maximum S2 Skewness Kurtosis k F r e W  
A 9.88 2 261 426 5.36 42.45 ,343 678 
B 7.93 2 468 296 10.84 235.32 .394 632 
T 24.22 10 605 1448 4.34 35.92 .656 0 

A, B = first and second whole days after spawning. T = total eggs. 

174 



JAHN AND SMITH: SAMPLE SIZE, CONTAGION, AND ESTIMATION 
CalCOFI Rep., Vol. XXVIII, 1987 

populations. This can be verified, for instance, by 
comparing the maximum likelihood estimates of k 
(Table 3) with the asymptotic moments relation- 
ship, k’ = m2/(s2 - m). However, as will be seen 
below, small samples from these distributions will 
tend to be negative-binomial-like enough that the 
null hypothesis in goodness-of-fit tests will seldom 
be rejected. 

Ten random samples at each of five sample sizes 
(20 to 500, Table 4) were drawn from each of the 

three populations. At  sample sizes < 500, the sam- 
ple mean bore an approximately linear relation- 
ship to the maximum observations, shown for the 
A samples in Figure 4. Only one T sample (#7 at 
n = 20) produced a confidence interval that ex- 
cluded the mean, but 16% of samples from the 
more positively skewed A and B populations 
(which also had > 25% zeros, Table 3) at n d 200 
produced estimates of the mean that were more 
than 2 standard errors below the true value. The 

TABLE 4 
Mean (m), Median (md), Maximum (max), and Standard Error (SE) of Samples of Engraulis mordax Eggs 

m md max SE m md max SE m md max SE 
A20 

A46 

A100 

A200 

A500 

11.25 
11.85 
10.30 
7.25 
7.90 
7.45 

10.80 
10.30 
9.65 
7.10 

10.30 
5.80 
4.85 

12.15 
17.54 
11.35 
10.67 
7.96 
5.35 

10.80 
10.20 
9.38 

11.83 
11.93 
10.44 
7.46 

13.50 
9.54 

10.69 
10.12 
9.80 

12.28 
11.35 
13.43 
7.52 
9.26 

10.15 
7.96 
9.52 

10.59 
9.48 
9.52 

10.10 
10.40 
10.28 
8.88 

10.79 
10.82 
11.38 
10.66 

1 
3 
4 
1 
4.5 
3.5 
5 
7 
1.5 
1 
1 
1 
2 
6 
3 
4 
3 
3 
1.5 
3.5 
2 
3 
3 
3 
3 
2 
2 
3 
4.5 
4 
2 
3 
3 
3 
3 
3.5 
3 
2 
3 
2.5 
2 
2 
2 
3 
2 
2 
3 
3 
3 
3 

71 
71 
48 
37 
39 
47 
46 
39 
79 
55 
99 
71 
26 
71 

247 
94 

127 
109 
53 
84 

102 
119 
170 
244 
20 1 
87 

229 
118 
170 
65 

126 
245 
157 
261 
64 

157 
157 
94 

132 
26 1 
229 
229 
261 
26 1 
245 
245 
170 
261 
247 
201 

4.57 
4.09 
3.43 
2.67 
2.29 
2.89 
3.17 
2.35 
4.35 
3.31 
3.16 
1.86 
1.01 
2.57 
6.52 
2.53 
3.25 
2.54 
1.37 
2.78 
1.91 
1.69 
2.42 
2.94 
2.45 
1.38 
3.22 
1.76 
2.02 
1.35 
1.34 
1.88 
1.47 
2.12 
0.78 
1.28 
1.40 
1 .os 
1.27 
1.69 
0.95 
0.91 
0.97 
0.97 
1.03 
0.83 
0.95 
1.04 
1.18 
0.98 

B20 

B46 

BlOO 

B200 

B500 

4.55 
4.25 
4.00 
7.05 
9.80 
9.95 

11.05 
6.70 
8.45 
3.75 

10.09 
4.44 
9.13 

15.91 
8.17 

10.74 
10.59 
7.78 

10.48 
6.37 
8.19 
5.71 
6.15 

12.35 
8.94 

10.71 
5.85 

14.15 
10.24 
6.86 
8.60 
7.95 
7.41 
9.94 
7.29 
5.98 
1.71 
7.23 
7.65 
7.62 
7.79 
8.49 
7.89 
8.49 
8.31 
8.19 
9.81 
8.11 
8.15 
7.86 

1 
1 
2 
1 
1 .5 
5.5 
3 
1 
3 
1 
3 
1 
2.5 
2.5 
1 
3 
2 
1.5 
2.5 
2.5 
2 
2 
3 
1 
3 
3 
2 
3 
2.5 
2 
3 
1.5 
3 
4 
2 
2 
2 
3 
2 
2 
3 
2 
2 
2 
2 
3 
2 
3 
2 
2 

27 
47 
15 
34 
38 
61 
46 
34 
36 
27 
86 
37 
74 

468 
55 

119 
142 
88 
83 
35 

128 
39 
45 

468 
87 

201 
59 

468 
201 

69 
131 
142 
119 
140 
131 
42 
88 
64 
75 

142 
120 
468 
142 
128 
201 
140 
468 
201 
468 
142 

1.59 T20 
2.33 
0.99 
2.22 
2.98 
3.32 
3.41 
2.40 
2.42 
1.44 
2.57 T46 
1.20 
2.36 

10.15 
2.00 
3.03 
3.62 
2.23 
2.77 
1.28 
1.73 Tl00 
0.88 
0.83 
4.94 
1.63 
2.61 
0.94 
4.89 
2.64 
1.15 
1.10 T200 
1.20 
0.94 
1.24 
1.09 
0.60 
1.00 
0.81 
0.92 
1 .08 
0.61 T500 
1.13 
0.66 
0.67 
0.72 
0.64 
1.23 
0.68 
1.15 
0.67 

19.30 
15.55 
29.10 
24.95 
19.00 
25.10 
11.45 
46.70 
18.45 
23.40 
31.89 
21.52 
32.13 
25.54 
25.67 
19.96 
20.63 
30.67 
31.13 
28.94 
22.35 
24.04 
29.03 
25.27 
21.66 
24.34 
23.43 
22.52 
21.27 
27.46 
26.72 
22.05 
22.11 
22.49 
21.27 
25.77 
21.25 
23.05 
23.61 
21.33 
23.52 
24.26 
23.16 
22.20 
21.36 
26.23 
22.11 
23.51 
24.90 
23.35 

8 127 6.85 
7 83 4.31 

17.5 173 8.63 
9.5 144 8.09 
3 177 10.81 

15 114 6.55 
6 61 3.12 

19 252 14.58 
13.5 60 3.97 
11 106 7.14 
15 201 6.10 
11.5 97 3.84 
16 166 6.20 
8.5 140 4.91 

14.5 242 6.06 
8.5 117 3.65 
9.5 167 5.17 

15.5 177 6.07 
19 157 5.49 
16 248 6.27 
6.5 174 3.59 

13 147 2.92 
12 342 5.08 
7 382 4.70 
7.5 168 3.35 
9 217 3.82 
8.5 252 3.59 

11 171 2.83 
11 273 3.47 
10.5 173 3.80 
10.5 605 3.86 
9 174 2.22 
7 168 2.24 
9 273 2.42 
9 174 2.09 
9 273 2.82 
7 217 2.40 

10 252 2.42 
8 211 2.46 

10 195 2.06 
10.5 249 1.49 
9 251 1.70 

10 342 1.60 
10 342 1.45 
9 382 1.55 

11 605 2.06 
9 215 1.39 

10 25 1 1.54 
9 605 1.96 

11 342 1.59 

A = first whole day, B = second whole day after spawning; T = total eggs. Number after age designation is sample size. 
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of samples drawn from a “population” of northern anchovy eggs (population 
A, Table 3). 

worst case was sample A46#3, with sample mean 
= 4.85 and standard error = 1.01. The 95% confi- 
dence limits by formula 2 for this sample are 3.2- 
7.3, well below the true mean value of 9.9. How- 
ever, the adaptation of Easterling’s “consonance 
region” produced an interval estimate for the 
mean (3.5-10.5) that included the true value (Ta- 
ble 5) .  This method thus shows promise of reduc- 
ing the frequency of samples in the “low tail,” 

found above to be several times too high at sample 
sizes < 500. 

At the other extreme among A samples was 
A46#5, with mean = 17.54 and standard error = 
6.52. The high mean and variance of this small 
sample were strongly affected by the maximum 
value of 247 (Table 4; Figure 4), giving a wide con- 
fidence interval by formula 2 of 8.54-36.02. The 
consonance region for this sample gives credence 
to a narrower range of values for the population 
mean (approximately 7-14, Table 6), excluding the 
sample mean but still containing values above and 
below 9.9, the true mean. The effect of the very 
high maximum value on estimates of central tend- 
ency and dispersion was therefore moderated by 
the shape of the rest of the data in the sample. 
Besides the maximum value, sample A46#5 also 
chanced to have two other values > 100 but a me- 
dian of only 3, characteristics that contribute to the 
bilobed nature of the consonance region as com- 
puted here. 

The goodness-of-fit results of Table 6 also sug- 
gest that the negative binomial may be a poor gen- 
eral model for the data of sample A46#5, as no p 
3 .5 region was found. If these data were all that 
we knew about the population, with what confi- 
dence could we make statements about its param- 
eters? Before such questions can be answered, 
work must be done to quantify the distribution of 
consonance regions for contagiously distributed 
data, and to work out the robustness of the method 
to departures from completely specified distribution 

TABLE 5 
Chi-square Probabilities of Goodness of Fit to Sample A46 #3 
(See Table 4) of Negative Binomial Models with Parameters 

m and k 
TABLE 6 

Chi-square Probabilities of Goodness of Fit to Sample A46 #5 
of Negative Binomial Models with Parameters m and k 

m k 

12.5 . I  
12.0 .1 .1 
11.5 . I  . I  . 1  
11.0 .1 . 1  .1 
10.5 .2 .2 . I  . I  

- 
.2 .3 .4 .5 .6 .7 .8 .9 

10.0 .2 .2 .2 .1 .1 
9.5 .1 .2 .2 .2 .2 .1 
9.0 .2 .2 .2 .2 .2 .2 .1 
8.5 .2 .2 .2 .2 .2 .1 
8.0 .2 .2 .5 .2 .2 .2 .1 .1 
7.5 .2 .2 .5 .s .2 .2 .1 . I  
7.0 .2 .2 .s .5 .s .2 .2 .2 . 1  
6.5 .2 .2 .5 .5 .5 .2 .2 .2 .2 .1 
6.0 .1 .2 .2 .5 .5 .5 .5 .2 .2 .2 .1 
5.5 .1 .2 .5 .5 .5 .s .5 .5 .2 .2 .1 
5.0 .1 .2 .5 .5 .5 .s .5 .5 .2 .2 .2 .2 .1 .1 
4.5 .1 .2 .5 .5 .5 .s .5 .2 .2 .5 .2 .2 .2 .1 
4.0 .2 .2 .5 .5 .5 .2 .5 .2 . I  .1 .2 . 1  
3.5 .1 .2 . I  .2 .2 .2 .2 .2 .2 .1 . I  
3.0 . I  .1 .1 . I  .1 

m k 

15.0 
14.5 
14.0 
13.5 
13.0 
12.5 
12.0 
11.5 
11.0 
10.5 
10.0 
9.5 
9.0 
8.5 
8.0 
7.5 
7.0 
6.5 
6.0 

.25 .35 .45 .55 .65 .75 
.1 
.1 

.2 . I  

.2 . I  

.2 .1 

.2 . 1  

.2 .1 

.2 .1 

.2 .1 

.1 .I .1 

.1 .1 

.2 .1 .1 

.1 . I  .2 .1 

.1 .2 .2 

.I  .2 .2 .2 .1 .1 

.1 .2 .2 .2 .2 .I  .1 .1 
.1 .2 .2 .I .1 .1 . I  

. I  . I  .1 
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models. Because of the astronomical number of 
computations required, it is very unlikely that gen- 
erally applicable tables will be forthcoming. How- 
ever, solutions to specific situations, with a few 
models over a limited range of parameters, should 
be producible for a given research application. 

One obvious limitation of the consonance region 
approach is that as sample size increases, the statis- 
tical power to reject the null hypothesis (i.e., no 
difference between sample and specified frequency 
distribution) increases as well. The consonance re- 
gion will become correspondingly small until some 
practical limit is reached. At such a point it may be 
plausible to use models with more parameters, as 
suggested by Easterling (1976), but as sample size 
increases, so does the suitability of simpler fiducial 
methods, such as formula 2. 

When, as in pelagic fish-egg and larval census 
work, the potential exists for a few observations to 
dominate parameter estimates, the best insurance 
against wrong estimates is large sample size. In 
some applications, the costs of increasing sample 
size may seem too high, and the lower precision of 
small samples may be acceptable. We have empha- 
sized here that special methods are needed in these 
cases in order to make correct probability state- 
ments about the population. We are not advocat- 
ing the use of small samples. Rather, it is hoped 
that the above examples and the data of Table 2 
will be helpful to planners who must weigh the 
costs and benefits of various approaches to sam- 
pling contagiously distributed organisms. 
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